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Abstract

Obstructive sleep apnea (OSA) and low bone mass are two prevalent conditions, particularly
among older adults, a section of the U.S. population that is expected to grow dramatically over the
coming years. OSA, the most common form of sleep disordered breathing, has been linked to
multiple cardiovascular, metabolic, hormonal and inflammatory derangements and may have
adverse effects on bone. However, little is known about how OSA (including the associated
hypoxia and sleep loss) affects bone metabolism. In order to gain insight into the relationship
between sleep and bone, we review the growing information on OSA and metabolic bone disease
and discuss the pathophysiological mechanisms by which OSA may affect bone metabolism/
architecture.

Corresponding Author/Reprint Requests: Dr. Eric Orwoll 3181 S.W. Sam Jackson Park Rd. Portland, Oregon 97239,
Orwoll@ohsu.edu, Phone (503) 494-1385 Fax (503) 494-4816.

Supplemental Materials: None

Disclosure Statement:

CMS, SAS, KLS, CJR, GK have nothing to disclose related to this manuscript.
JAC serves on Merck advisory board and has provided expert testimony for Merck.
SR is on the board of the American Academy of Sleep Medicine.

ESO consults for and has received research support from Amgen, Lilly and Merck.
For further details, please see author agreements completed by each author.

Authors’ Roles:

Manuscript Concept: CMS, ESO, SAS

Drafting Manuscript: CMS

Revising Manuscript Content: CMS, ESO, SAS, KLS, JAC, CJR, SR, GK
Approved Final Version of Manuscript: CMS, SAS, CJR, GK, ESO



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Swanson et al. Page 2

Keywords

one mineral density (BMD); obstructive sleep apnea (OSA); nocturnal hypoxia; fracture; sleep;
sleep loss; circadian rhythm; bone remodeling; review

Introduction

Low bone mass and sleep disturbances affect a significant portion of the population over 50
years of age and are associated with morbidity, mortality and economic burden. Based on
National Health and Nutrition Examination Survey (NHANES) data, in 2010 approximately
54 million U.S. adults over the age of 50 were affected by low bone mass, 10 million of
whom were in the osteoporotic range (1). In the U.S. in 2005, osteoporotic fractures cost an
estimated $19 billion (2, 3). Such fractures are associated with pain, a decreased quality of
life, an increased rate of institutionalization, and increased mortality (estimated at 20-40%
in the first year after a hip fracture, with a persistently increased mortality risk up to 10 years
after hip fracture) (2, 4).

Sleep disturbances are also common in U.S. adults. Obstructive sleep apnea (OSA) is the
most common sleep disordered breathing problem in the U.S. (5). OSA affects nearly 1 in 7
adults, many of whom are undiagnosed (5, 6). OSA predominantly affects older, obese,
males; some studies suggest that up to 1 in 4 older men are affected (6). Females and those
with a normal BMI but who are anatomically predisposed to a narrow/collapsing airway are
also affected (7). OSA is characterized by repeated episodes of airway collapse resulting
from sleep-related changes in upper airway dilator muscle tone (5) leading to hypopneas
(decreased airflow) and/or apneas (cessation of airflow). These events cause hypoxia and
recurrent, apparently life-saving arousals that result in marked elevations in sympathetic
nervous system (SNS) activity, which is often sustained beyond sleep throughout the waking
hours. OSA is linked to increased inflammation, has the potential to disrupt melatonin
secretion and is a risk factor for many cardiovascular disorders (hypertension, heart disease,
stroke) (7) and endocrine disorders (metabolic syndrome, obesity, insulin resistance,
diabetes mellitus type 2, hypogonadism) (7, 8). In addition, OSA has been associated with
impaired motor function, cognitive function and memory which contribute to an increased
risk of falls and accidents (9). OSA results in an estimated $3.4 billion in indirect medical
costs related to co-morbid conditions and $15.9 billion in OSA-related motor vehicle
accidents and decreased quality of life (10). The severity of OSA is generally expressed as
the apnea-hypopnea index (AHI), a count of the number of apneas and hypopneas per hour
of sleep, although this metric does not quantify the degree of hypoxemia experienced.
Clinically, individuals with greater AHIs are more likely to report excessive daytime
sleepiness, snoring, morning headaches and decreased libido (7). The treatment of choice for
OSA is continuous positive airway pressure (CPAP) (11-13).

Evidence suggests an association between OSA and disorders of bone metabolism/
architecture including fracture (14-16). Therefore, as the U.S. population ages and the
prevalence of OSA and osteoporosis increase it is important to better understand how they
may be linked. OSA can indirectly increase the risk of low bone mass and fracture through
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metabolic changes and sleepiness (17) but also appears to directly affect bone health through
other mechanisms. This review will focus primarily on OSA and its associated nocturnal
hypoxia and sleep loss. However, the mechanisms by which OSA affects bone metabolism
likely apply to other sleep disturbances since, for example, sleep loss, inflammation and
alterations in melatonin are common to many abnormal sleep patterns and disorders.

We will provide a brief description of normal sleep, circadian and bone physiology; review
the evidence relating OSA to bone turnover, BMD and fracture; examine the
pathophysiological mechanisms by which OSA may affect bone biology via hypoxia, sleep
loss, increased sympathetic tone, alterations in melatonin or co-morbid conditions; introduce
the concept of skeletal chronotherapeutics; consider how osteoporosis may affect sleep; and
propose future areas of OSA/bone research including exploring the skeletal implications of
OSA in younger populations.

Normal Sleep (Figure 1)

In humans, the desire for, timing of, and ability to fall asleep are related to underlying
interactions between homeostatic factors (e.g. prolonged wakefulness increases the drive to
sleep), circadian factors (e.g. it is easier to sleep in the biological nighttime vs. daytime), as
well as emotional and cognitive inputs (e.g. stress can interfere with sleep initiation or
maintenance even after prolonged wakefulness and sleep loss) (9, 18). The reasons for sleep
are not completely understood, but some primary mechanisms by which sleep occurs are
known. At the neural level the balance between wake and sleep is governed, in part, by
distinct groups of neurons, the tuberomammillary nucleus (TMN) and the ventrolateral
preoptic nucleus (VLPO) (18). The firing rates of these two groups of neurons, relative to
one another, tip the balance towards sleep (when VLPO dominates) or wakefulness (when
TMN dominates) (Figure 1) (18). Hypothalamic release of the wake-promoting
neurotransmitter orexin can stabilize this balance and prevent rapid transitions from
wakefulness to sleep (18). On the other hand, the neurotransmitter adenosine accumulates in
the basal forebrain during wakefulness and is thought to play a role in the homeostatic drive
for sleep through actions on VLPO neurons. The circadian system affects many neural
circuits and hormones that can modulate sleep and wakefulness. For instance, the circadian
system helps promote sleep at night through neural projections to the pineal gland and
release of melatonin, and helps promote wakefulness during the day via neural projections to
the arousal areas of the brain, such as orexin neurons (18).

In humans, normal sleep consists of cycles of rapid eye movements (REM) and non-REM
(NREM) stages; each stage is characterized by distinct patterns of brain, muscle and ocular
activities (9). Slow wave sleep (SWS) (also known as N3 sleep), is the stage of NREM sleep
that is considered the most restorative: it is when arousability is lowest and cortical activity
is synchronized, presumably to facilitate some of the primary functions of sleep such as
memory consolidation (19). SWS is also associated with increased parasympathetic activity,
decreased sympathetic activity (9), and increased release of certain hormones including
growth hormone (GH). SWS and total sleep time decrease with age (8).
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OSA is more prevalent in older populations, can affect seemingly healthy elderly individuals
(20), and can exacerbate these normal, age-associated, changes in sleep. Although the
tiredness associated with OSA can result in more time spent in bed with greater total sleep
time, it is considered to be non-restorative sleep perhaps due to the fact that VLPO neurons
(the sleep promoters) are inhibited by noradrenergic input, which is increased in OSA.
Increased sympathetic drive is an important feature of OSA that results from recurrent
hypoxia, decreased SWS, and sleep loss (21, 22). In OSA, sleep restriction and disruption
contribute to disorganized sleep architecture, disordered sleep-wake homeostasis and
subsequent disturbances in normal hormonal rhythms. Acutely and over time, sleep
deficiency and inefficiency contribute to increased mortality and disability related to
cardiovascular and metabolic diseases, increased inflammation and impaired cognition and
motor skills (9).

Normal Circadian Rhythm, Synchronization and Bone (Figure 2)

Approximately 10-20% of the genes in any tissue are expressed in a cyclic manner (23).
The intrinsic central, or master, circadian clock is located in the hypothalamic
suprachiasmatic nucleus (SCN). The SCN receives light/dark cycle input to synchronize its
own activity and thereby orchestrate behavioral, physiologic and cellular rhythms optimally
across the day and night, including the sleep/wake cycle (24-26). The SCN communicates
and synchronizes with clock genes [BMAL1, CLOCK, Period 1 and 2 (Per1 and Per2),
Cryptochrome 1 and 2 (Cry1 and Cry2)] located centrally and in the periphery via direct
neural connections, the SNS, hormonal signals (such as melatonin and cortisol), and the
regulation of body temperature (27-32). Clock genes, which have been identified in
virtually all cells of the body, including bone cells (Per1, Per2, Cryl, Clock, and BMAL1 in
osteoblasts (33); Cry2, Perl, Per2, and BMALL in osteoclasts (27)), contribute to the
rhythmicity of numerous physiological systems by regulating gene expression (33, 34). Per
genes in osteoblasts limit bone formation and Cry2 genes in osteoclasts stimulate bone
resorption (35-37). Female mice lacking either gene have a similar high bone volume
phenotype (35). In Per2 deficient mice the phenotype results from a higher bone formation
rate and in Cry2 deficient mice it results from decreased osteoclast activity.

Circadian external synchrony (appropriate timing between an organism and its environment)
and internal synchrony (appropriate timing between central and peripheral clocks) are
important for efficiency, optimal metabolism and overall health (25, 38). Such synchrony
likely evolved so that the cell/organism can prioritize metabolic processes and match energy
supply with activity demands. For example, during the day metabolic processes in humans
are optimized for energy intake and peak metabolic activity, while at night processes focus
on repair, growth and consolidation (38). These circadian rhythms are disrupted when
external cues are shifted (as occurs in jet lag or shift work). The central clock is capable of
resynchronization. However, this process depends on the severity of the shift and can take
many days (38). Peripheral clocks have different susceptibilities to environmental input (e.g.
light/dark cycles, food intake, physical activity, etc.) and may resynchronize at a different
speed than central clocks leading to internal desynchrony (26, 38). Desynchrony has been
associated with the development and progression of metabolic/cardiovascular disease,
cancer and even death (9) perhaps due to inefficient and uncoordinated cellular processes
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and repair. For instance, internal desynchronization could result in a mismatch between
protein production and receptor expression.

In humans, osteoblasts and osteoclasts seem to display circadian rhythmicity (see next
section) and could be adversely affected by circadian disruption and/or poor sleep. The SCN
communicates with osteoblasts via the SNS and glucocorticoids (36, 37, 39), while
synchronization between the SCN and osteoclasts largely depends on glucocorticoids (27).
This suggests that the SNS and glucocorticoids are important for internal synchronization
despite their weak effect on the actual rhythm of bone turnover markers (BTMs).

There are several reasons to believe that OSA could cause circadian disruption. First,
disturbed sleep may result in more nocturnal light exposure which can adjust the circadian
system (40). Secondly, OSA can augment the transcription of circadian proteins (41).
Thirdly, there is some evidence in humans and other animals to suggest that hypoxia impacts
both the SCN and melatonin secretion (42). OSA has not been shown definitively to cause
circadian disruption but it has the potential to cause internal desynchrony and disruption of
the day/night rhythm of BTMs which could impact bone health.

Normal Diurnal Variation of Bone Turnover Markers (Figure 3)

Many hormones have day/night rhythms of secretion and pulsatility that are either
endogenous circadian rhythms or are caused by the daily patterns of behavior, such as sleep/
wakefulness or fasting/feeding. Such day/night rhythms are susceptible to disruption from
sleep disturbance and nocturnal light exposure (8). BTMs have a clear day/night pattern in
humans. Markers of bone resorption and, to a lesser degree, bone formation increase
overnight with a peak in the early morning hours (a time period of predominantly REM
sleep) and a nadir in the late afternoon (43). This rhythm is largely independent of posture
(44), normal light/dark cycles (45), parathyroid hormone (PTH) (46), GH (47), sympathetic
tone and cortisol (48, 49). As shown in Figure 3, CTX decreases with food intake while the
amplitude of the diurnal rhythm is blunted during fasting (45, 50). Thus, the rhythm may be
driven by food intake and associated endocrine and nutritional signals, including the release
of glucagon-like peptide 2 (GLP-2) (45, 50). To a much lesser degree, the day/night patterns
of BTMs are also influenced by sex, reproductive hormone status and use of osteoporosis-
related medications such as bisphosphonates (51). Additional factors, such as leptin, may
also be involved in BTM rhythmicity (52).

Little is known about any endogenous circadian rhythmicity of the osteocyte. A preliminary
report suggested a day/night pattern of sclerostin is present in healthy young men with a
peak around 1 AM but it did not distinguish if this peak was related to the occurrence of
sleep or an internal circadian rhythm that would have persisted during constant behaviors
(53). Intact but not C-terminal FGF-23 levels peak in the early morning (54) and skeletal
FGF-23 levels appear to display a food-driven day/night pattern that is mediated by
sympathetic activity (55). To our knowledge, peripheral clock genes have not been
identified in the osteocyte, and it is unclear if an osteocyte’s day/night pattern modulates the
rhythms of other bone cells.
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Bone Turnover and Bone Density in OSA

In 2008, Tomiyama et al found a positive correlation between AHI and urine CTX in men
and urine CTX decreased after 3 months of OSA treatment with CPAP (16). To our
knowledge, this is the only study of the relationship between OSA and BTMs and suggests
an increased rate of bone turnover in OSA that can be normalized with OSA treatment.

More recent studies have examined the relationship between OSA and BMD in humans,
with conflicting results. After adjusting for BMI, Uzkeser et al found that 21 Turkish men
with OSA (average age 54 years), had lower BMD at the lumbar spine (L-spine) and
femoral neck compared to 26 healthy age and sex matched controls (56). These differences
in BMD were statistically but not clinically significant. Conversely, Mariani et al (57)
performed a cross-sectional evaluation of the relationship between OSA and BMD in 115
obese men and women with OSA and found no association between the severity of OSA and
L-spine, femoral neck or total hip BMD. Notably, this study lacked a control population and,
likely due to obesity, the majority had normal BMD; < 5% were osteoporotic. The findings
from Mariani et al were in line with those of Torres et al (58) who exposed orchiectomized
mice to intermittent hypoxia, thereby to some extent mimicking OSA, and found that
trabecular BMD in the femur did not differ between the normoxic and hypoxic rats. The
authors suggested that the 32-day protocol used in the study was long enough to observe a
change in BMD. However, it may not be an accurate translational model for humans since
patients may be exposed to many years of undiagnosed or untreated OSA with cumulative
effects. In 2013, Sforza et al (59) reported that OSA was associated with higher BMD (at the
L-spine and proximal femur) in 833 elderly subjects in France and that worsening nocturnal
hypoxemia appeared to be protective of BMD . The three studies in humans by Uzkeser et al
(56), Mariani et al (57) and Sforza et al (59) differed in their patient populations, study
designs and definition of OSA. Sforza et al used AHI = 15, Mariani et al AHI =5 and
Uzkeser et al did not specify. The American Academy of Sleep Medicine defines OSA as an
AHI = 15 or an AHI = 5 with symptoms (60).

Most recently, Chen et al reported that 1377 people with OSA in a retrospective longitudinal
cohort study in Taiwan were 2.7 times more likely to develop osteoporosis compared to
20,655 individuals without OSA over 6 years of follow-up (14). This study was the largest
to date and had the longest follow-up. Another study from Taiwan corroborated these results
and identified an increased risk of osteoporosis in those with apnea and non-apnea related
sleep disturbance (61).

The contradictory results of OSA-BMD studies may be due to a number of factors, including
study design and skeletal differences in susceptibility to OSA. For example, it may be that
the cumulative effects of ongoing chronic injury are the most detrimental to bone and
therefore can only be appreciated after many years of repetitive damage. In addition, the
deleterious effects of OSA on bone may be most evident in bones more susceptible to
imbalances in bone turnover, depending on age, sex hormone status and BMI (e.g.
postmenopausal women, adolescents).
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In sum, these studies utilized different study populations and had methodological
inconsistencies that make it difficult to draw reliable conclusions. The study by Chen et al,
which was longitudinal, larger, and studied more carefully identified OSA and control
populations, interpreted together with the intervention study by Tomiyama et al, suggests
that OSA is associated with increased bone resorption and subsequent BMD loss.

Sleep Disturbance and Fracture

Although no studies have specifically addressed OSA and fracture risk, a few have linked
the physiological processes that occur in OSA to fracture. Additional literature suggests that
other sleep disturbances are associated with increased fracture risk (15, 62).

Recent changes in the pattern of sleep were associated with an increased risk of hip fracture
in Southern European men (63), although the nature of this sleep disturbance was not well
characterized. The Nurses Health Study found an increased risk of hip and wrist fracture in
postmenopausal women who reported working at least three rotating night shifts per month
(62). The authors proposed that decreased melatonin secretion might have been responsible
for the increased risk. However, the participants worked rotating night shifts therefore
introducing several potential confounders to the proposed relationship (metabolic, hormonal,
vitamin D related). In addition, the underlying pathophysiology may have been related to
sleep loss and/or the inherent circadian shifts associated with the rotating schedule.

Individuals with daytime sleepiness from OSA are more likely to nap and Stone et al (64)
identified more hip fractures in women who take naps. This was speculated to be due to
decreased lower extremity strength in the napping population. Most convincingly, data from
the MrOS study (15) indicates that nocturnal hypoxia (defined as SaO, < 90%) was
associated with an increased risk of falls and non-spine fractures in 2,900 men. This
increased risk was independent of BMI, physical activity and age and might be due to the
underlying inflammation associated with hypoxia (65-68). These analyses were unable to
adjust for possible confounders such as vitamin D status, bone turnover or other hormonal
factors. It is important that future prospective studies be designed to collect data to
adequately investigate this relationship.

Direct and indirect mechanisms by which OSA may affect bone

OSA may affect bone metabolism and architecture via hypoxia, sleep restriction, increased
sympathetic tone, alterations in melatonin and/or other hormonal or co-morbid conditions.

Hypoxia and bone

Nocturnal hypoxia is a cardinal feature of OSA, but the skeletal response to OSA-induced
hypoxia in humans is not known. Many studies on the effects of hypoxic conditions have
been performed in human cell cultures or animal (mouse) models with different degrees of
hypoxia severity, often not simulating OSA (in which there is nocturnal recurrent
hypoxemia of variable severity with periods of desaturation and re-oxygenation).
Additionally, a skeletal response to hypoxia likely differs based on bone age, the severity/
chronicity of the hypoxia, and whether the hypoxia is local and physiologic (as occurs in a
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growing skeleton and at fracture sites) vs. diffuse and pathologic (e.g. OSA, bone
metastases).

Hypoxia affects bone through a family of transcription factors [Hypoxia-Inducible Factor
(HIF)] (69, 70). There are 3 HIF proteins that share a common f subunit and have unique a
subunits (70). HIFs are essential for cells to adapt and survive in a hypoxic environment
(69). Osteablasts express HIF-1a and HIF-2a, (69) which regulate angiogenic osteogenic
coupling (69, 70). HIF-1a accumulates in response to hypoxia. HIF-1a directly stimulates
osteoclast activity (71), directly inhibits MSC osteogenic and adipogenic differentiation (70)
and blocks the osteoanabolic effects of PTH in mature mouse bone (72). HIF-1a also
induces production of vascular endothelial growth factor (VEGF). In humans, VEGF
stimulates MSCs, their osteogenic differentiation and the subsequent proliferation and
survival of osteoblasts (70). VEGF also stimulates hematopoietic stem cell differentiation
into osteoclasts and bone resorption in humans (73, 74). Thus, HIF-1a and VEGF both
stimulate osteoclasts but have opposing effects on osteoblasts. It is possible that regulation
of this balance allows the HIF-1a/VEGF pathway to be beneficial in physiological periods
of bone growth or in fracture repair, but may become disregulated in mature, remodeling
bones and in hypoxic conditions produced by disease (e.g. bone metastases, OSA).

Hypoxia is harmful to bone by inducing acidosis and inflammation. The episodic nocturnal
hypoxia seen in OSA (throughout the night and over years if untreated) can cause recurrent
ischemic injury, which creates inflammation and a hypoxic, acidotic microenvironment in
bone. In humans, inflammation has been associated with fractures (75, 76). In animal (rat
and elephant) bone, acidosis activates osteoclasts and inhibits mineral deposition by
osteoblasts (67, 68).

Hypoxia favorably affects the osteocyte in animal models. Hypoxemia promotes osteoblast
differentiation into the osteocyte in mice (77) and decreases sclerostin expression in rats
(66).

Oxidative stress is often present with hypoxia. It occurs when there is insufficient
antioxidant capacity for a given free radical burden. Oxidative stress is associated with
increased bone resorption and low bone mass. Low antioxidant levels have been associated
with osteoporosis and an increased fracture risk (78-80). Although the mechanisms for this
association are unclear, it may be related to altered collagen structure (15, 81), osteoclast
stimulation (via increased production of RANKL) and inhibition of osteoblast differentiation
and function (80).

Much of this data comes from simulated hypoxia in rats and the effect of hypoxia on bone
cells in humans may ultimately depend on the duration, severity, frequency and chronicity of
the hypoxia (82).

Sleep fragmentation, sleep deficiency and bone

Recurrent awakenings occur throughout the night in those affected by OSA, resulting in the
build-up of sleep loss or sleep “debt”. Although the amount of sleep required by an
individual varies, evidence suggests physiologic and neurobehavioral deficits are more

J Bone Miner Res. Author manuscript; available in PMC 2016 February 01.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Swanson et al.

Page 9

likely with less than 7 hours of sleep per night (83, 84). The Centers for Disease Control and
Prevention estimate that 1 in 3 U.S. adults are below this threshold (85). Sleep fragmentation
resulting in sleep loss over time is an important component of OSA and may have additional
direct effects on bone that may act synergistically with hypoxia to structurally weaken bone.

In a study from Norway, insomnia, which is self-reported poor sleep quality, was associated
with an increased risk of osteoporosis in unadjusted and adjusted models (OR 1.52, 95% CI:
1.14-2.01 adjusted for age, gender, education, anxiety, depression) (86). Specker et al (87)
performed a cross-sectional analysis of over 1100 healthy adults in South Dakota and found
no difference in areal bone density (at the L-spine, femoral neck or total hip) in the 19% of
the population identified as being sleep deficient (average < 6.5 hours of sleep/weekday
night) compared to those who had adequate sleep. However, using peripheral quantitative
computed tomography (pQCT), cortical (not trabecular) volumetric BMD (vBMD) was
lower in sleep-deficient women but higher in sleep-deficient men, compared to sleep-replete
individuals, both before and after adjustment for covariates. After multiple covariate
adjustments including height and weight, torsional bending strength, as estimated by polar
stress strain index (pSSl), was lower in sleep deficient men compared to men with normal
sleep (pSSI 358 mm3 vs. 382 mm3 p < 0.05) which may have been due to lower cortical area
in the sleep deprived men. This clinically small difference was attributed to a trend towards
smaller periosteal circumference and cortical area. It is unclear why the differences in this
study were seen in cortical, but not trabecular bone.

Similarly, in a study from China, there was a trend towards lower total and regional BMD in
women sleeping < 7 hours per night with the largest difference in those who had < 5 hours
vs. those with = 8 hours of sleep/night ( for total BMD = -0.11, 95% CI -0.07 to —-0.01, p
<0.01; B for spine BMD = -0.09, 95% CI -0.08 to —0.01, p <0.05) (88). Rat models also
suggest that sleep loss is a risk factor for low bone mass. Compared to controls, osteoid
thickness, osteoblast number/activity and femoral areal BMD (aBMD) were decreased in
sleep-deficient rats while TRACP5b, a bone resorption marker, was elevated (89).

In general, the effect sizes of sleep disturbance on skeletal measures were small in these
studies. However, clinically significant differences may accumulate over time and/or when
sleep loss occurs at vulnerable times for bone, such as during bone modeling or gonadal
deficiency. For instance, sleep loss is common in peri- and postmenopausal women and may
accelerate the rapid estrogen-deficient bone loss that occurs during this time. Military
training (90) and space flight also represent overlapping periods of sleep disturbance and
alterations in bone turnover with accelerated bone loss. There may be additional skeletal
implications for these groups.

Overall, evidence suggests that sleep loss is detrimental to bone but the exact mechanism
(lower BMD vs. microarchitectural changes), the clinical significance of these seemingly
small differences, and their implications for fracture risk are unknown.

Leptin, sympathetic tone and bone

Overall leptin is a powerful inhibitor of bone mass accrual. Leptin’s rhythm of secretion is
affected by the circadian system and by the sleep/wake and fasting/feeding cycles. In
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humans, leptin levels typically peak at night when fasting (26, 91). Although
pharmacological experiments previously found that leptin directly signals bone cells, all
subsequent in vivo cell lineage tracing and cell-specific gene deletion experiments have
demonstrated only indirect effects of leptin on bone. Indeed, the main mediator of leptin’s
inhibition of bone mass accrual is the sympathetic nervous system that inhibits bone
formation and favors bone resorption (33, 92, 93). Leptin deficient mice have a high bone
mass phenotype, which can be corrected by intracerebroventricular infusion of leptin (94,
95). Similarly, bone mass is affected when the leptin receptor is deleted in the brain, but not
in the osteoblast (96, 97). Leptin inhibits serotonin synthesis in the brain as the first step in a
pathway that culminates in stimulation of sympathetic tone (96, 97). The fact that leptin
regulates bone mass by enhancing sympathetic tone is particularly relevant in OSA, when
SNS activity is already increased. Although inconsistent, the majority of the literature
suggests that leptin levels are increased in OSA (independent of OSA severity and BMI)
(91) and levels decrease with CPAP (98). High levels of leptin and SNS activity favor a low
bone mass phenotype. Therefore, if leptin stimulates sympathetic tone in OSA then lower
bone mass should result.

Sympathetic tone is increased in OSA. Murine osteoblasts express adrenergic receptors (99).
Excess noradrenergic tone leads to bone loss through suppression of bone formation and
increased bone resorption (99). The chronicity of increased noradrenergic tone may
attenuate the skeleton’s response. In chronic stress, release of neuropeptide-Y (NPY)
protects bone by inhibition of corticotropin-releasing hormone (CRH) and catecholamines
(99). Acutely, NPY has the opposite effect. Therefore, the effects of increased sympathetic
tone in OSA on bone may depend on its chronicity. BTMs peak overnight, a time when
sympathetic tone is usually low. The increased sympathetic tone in OSA may disrupt the
normal nocturnal peak in bone remodeling and therefore bone structure, density and
strength.

It is not known if melatonin levels or rhythms are different in OSA. Individuals with OSA
are more likely to have nocturnal light exposure that can theoretically disrupt melatonin
secretion. Disturbances in melatonin may have skeletal implications.

Melatonin, secreted by the pineal gland at night in humans, plays an important role in the
regulation of sleep and in circadian synchronization. The relationship between melatonin
and bone metabolism is complex and was recently reviewed comprehensively by Amstrup et
al (80). Melatonin receptors have been identified on human osteoblasts (100, 101), human
monocytes (102) and on osteoclasts in goldfish (80, 103, 104). Some rat models show an
inverse correlation between bone formation markers and melatonin (105). Conversely, in
mice, melatonin impairs osteoclast function by scavenging free radicals produced by local
bone resorption (decreasing oxidative stress), promotes mesenchymal stem cell (MSC)
differentiation into osteoblasts, decreases RANKL and increases osteoprotegerin (OPG) (80,
106). Oxidative stress is associated with decreased bone formation (by inhibiting osteoblast
differentiation and function) and enhanced bone resorption (by unknown mechanisms) (80).
Some evidence suggests that continuous, not intermittent, exposure to melatonin is
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responsible for the beneficial effects on bone formation (80, 107). Therefore, OSA’s
interference with continuous nocturnal melatonin secretion could have deleterious skeletal
effects.

Melatonin receptor expression is increased at night and may have similar rhythmic
expression on osteoblasts (80, 101). This may indicate a role for melatonin in the regulation
of the rhythm of BTMs. Levels of melatonin and its receptor decline with age, particularly
after menopause (80, 101). Therefore, lower levels of melatonin and decreased sensitivity to
melatonin due to decreased receptor availability may exacerbate post-menopausal bone loss.
The effects of melatonin on bone appear to be modulated by estrogen status. In animal
studies, melatonin can work synergistically with estrogen to positively impact bone (80,
108). However, melatonin also has anti-estrogenic effects (109). Melatonin is low in night
shift workers (110). Low levels of melatonin are speculated to explain the epidemiological
association between increased cancer rates and shift work/jet lag (38). The anti-estrogenic
effects of melatonin may play an important role since these associations are strongest for
estrogen and hormone-dependent cancers (breast, prostate, endometrial) (38). The
relationship between melatonin, estrogen and bone remains unclear but may have
implications for those with OSA (particularly if it is present during and after menopause)
and those with occupation related sleep disorders.

Slow wave sleep is decreased in OSA. Cardinali suggested that melatonin could help
prevent age-related bone loss by increasing SWS and GH (111). The only randomized
controlled trial of melatonin for bone health and quality of life in humans showed no
difference in BTMs or bone density by calcaneal ultrasound (112). This trial was small (18
peri-menopausal women) and of short duration (6 months). Further research in this area is
needed.

Effects of sleep disturbance on bone via other mechanisms (Figure 4)

Sleep disturbance and OSA may indirectly affect bone via associated co-morbidities such as
vitamin D deficiency, hypogonadism, obesity, insulin resistance and cognitive/physical
impairments.

Serum 25-hydroxyvitamin D levels, which correlate with BMD (113, 114) and hip fracture
(115), are lower in those with OSA vs. controls. This relationship appears to be proportional
to OSA severity but is not conclusively independent of BMI (116, 117). In addition, OSA
has been linked to a causal role in central hypogonadism (118, 119) that impairs bone
density by increasing bone resorption and therefore may mediate part of the relationship
between sleep and bone.

A cyclic relationship exists between metabolic dysregulation and sleep disturbances. Sleep
restriction has been shown to increase appetite (120), decrease satiety (120), decrease resting
metabolic rate (121), and contribute to insulin resistance thereby promoting weight gain,
obesity and diabetes mellitus type 2. Moreover, obesity is a risk factor for OSA and other
sleep disturbances (122) which can perpetuate the cycle. Osteoblasts express insulin and
IGF-1 receptors (123). Therefore, insulin resistance and GH suppression seen in sleep
restriction and OSA (8) may mediate some of the effects of sleep disturbance on bone
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metabolism. Although obesity has traditionally been thought to be protective of bone
density, it appears that type 2 diabetes mellitus and obese phenotypes fracture despite a
higher BMD (124). Therefore an OSA population may be predisposed to fracture, unrelated
to BMD.

OSA and poor sleep quality/duration have also been linked to mild cognitive impairment
(64, 122, 125), frailty (126), depression (127, 128), falls (129) and medications that
predispose to falls (64). Benzodiazepines, sometimes used for insomnia, are associated with
an increased risk of hip fracture in epidemiological studies (130). Some data suggest that it
is sleep loss itself, independent of medication use, that is associated with balance
impairment and falls (131, 132). Sleep restriction, napping and nocturnal hypoxemia were
also associated with falls in community-dwelling older men (17) and women (64). OSA
predisposes to daytime sleepiness and falls which may lead to progressive immobility and
subsequent bone loss.

Overall, those with OSA and other sleep disturbances have more co-morbidities including
multiple metabolic and hormonal disorders. Therefore, it is a challenging population to
study and to isolate the specific pathophysiological mechanisms responsible for the reported
associations of OSA with skeletal outcomes.

Chronotherapeutics (133) and Bone

The expression of clock genes in bone cells, the presence of rhythms in relevant endocrine/
metabolic systems, and the diurnal variation of bone turnover markers may indicate that
there is an optimal therapeutic window for bone-related medications. Zhang et al recently
studied gene expression across 12 tissues in mice and found that the rhythm of circadian
gene transcription and the expression of its receptors were often organ-specific (133). These
patterns were substantially conserved in humans (133, 134). This suggests that the
regulation of biological rhythms is specific to each organ. They also noted that the majority
of the best-selling medications on the market today target genes with rhythmic expression,
including skeletally relevant medications such as testosterone, estradiol, ergo/
cholecalciferol, hydrochlorothiazide and dexamethasone (133). Although Zhang et al did not
specifically examine bone, the concept of “chronotherapeutics” implies that a drug’s half-
life and the timing of gene and receptor expression in a target organ could have important
implications for the treatment of skeletal disorders (133, 134).

Effects of osteoporosis on sleep

The relationship between sleep and bone is probably bidirectional. In a 2003 survey by the
National Sleep Foundation, those with osteoporosis were 67% more likely to report
decreased sleep time (122) but were not at increased risk of other sleep disturbances
(daytime sleepiness, breathing pauses, restless leg syndrome). Although causality cannot be
established from this epidemiological analysis, this association could mean that those with
osteoporosis suffer from poorer sleep quality and that their fractures or fracture-related pain/
kyphosis could lead to sleep restriction. Indeed vertebral fractures have been associated with
the development of poor sleep (135, 136). This may create a self-perpetuating cycle of
worsening bone health and sleep disruption.
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Skeletal implications of OSA for children and adolescents

Although OSA is common in older men, it also affects younger populations, especially those
with enlarged tonsils/adenoids. OSA is increasingly common in younger individuals because
of the growing prevalence of childhood obesity. Up to 45% of adolescents with moderate to
severe obesity have polysomnographic evidence of OSA (137). These adolescent
populations may be especially susceptible to OSA-mediated insults to bone, which could
result in a large population at risk for low bone mass due to failure to reach their peak
skeletal mass, suboptimal bone modeling and subsequent accelerated loss if OSA is
superimposed on estrogen deficient states.

The skeletal effects of hypoxia on bone may differ according to the remodeling vs. modeling
state of bone and could have significant implications for adolescents affected by OSA. The
available data seem to suggest that in remodeling bone, exposure to hypoxia and HIF-1a
leads to bone loss by stimulating osteoclasts and suppressing osteoblasts at many levels. The
long-term implications of skeletal exposure to OSA and intermittent nocturnal hypoxia
during early life and adolescence have not yet been studied. However, rats exposed to
hypoxia during the first 7 days of life were found to have lower BMD that recovered after a
period of normoxia (138). The exact site of BMD analysis was not specified. Hypoxia was
associated with an increase in corticosterone levels and a decrease in food intake, which may
have affected BMD. Sleep restriction, metabolic disturbance, hypogonadism and other
sequelae of OSA may also be present in children/adolescents and could have effects on the
growing skeleton. If these effects are present during growth, it would be important to
diagnose and treat OSA early so normal bone modeling can resume and correct any deficits
in bone mass and/or microarchitecture/strength. If left untreated, the peak bone mass in
OSA-affected individuals may be reduced, thereby predisposing them to low bone mass later
in life. The issue of OSA during adolescence is likely to be of increasing importance with
the growing prevalence of obesity in younger age groups.

Future Research Considerations

The relationship between disrupted sleep and bone is difficult to study for many reasons.
First, melatonin levels, total sleep time and SWS decrease with age (139) and sleep patterns
and circadian rhythms change throughout life, so the potential for internal circadian
desynchrony and the magnitude of sleep-induced alterations in bone may vary over a
lifetime. In addition, changes in bone are often measured over years during which sleep
patterns may change, which makes it challenging to relate a specific sleep phenotype
directly to skeletal outcomes (64). Secondly, the effects of sleep disturbance are difficult to
study in isolation due to the multiple biological, metabolic and hormonal disruptions implicit
in the clinical syndrome of OSA. Finally, it has been difficult to draw overall conclusions
because the severity of sleep disturbance often differed between studies and sleep
disturbance may affect bone differently depending on the site (cortical vs. trabecular), stage
of life, and/or the presence of other disturbances in remodeling/modeling. These inter-
related factors will need to be considered in future research on bone and sleep to answer a
number of important questions, including:

1. Does the osteocyte have a circadian rhythm or function?
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2. How does circadian rhythm disturbance affect bone metabolism?

3. Is the timing of osteoporosis medication administration important with regards to
rhythmic receptor expression?

4. Do the bone-related effects of OSA differ according to the severity, duration and/or
chronicity of OSA, cortical vs. trabecular bone or by the presence of other skeletal
disturbances?

5. How does sleep disruption during growth affect bone? For example, does OSA
during adolescence predispose to lower than expected peak bone mass and an
increased incidence of osteoporosis and/or fracture?

6. Does OSA treatment improve bone health and skeletal outcomes?

7.  What are the skeletal implications of other sleep problems (e.g. shift work, jet lag)?

Conclusions

OSA may be an unrecognized cause of secondary osteoporosis. The diurnal rhythm of bone
turnover is likely important for normal remodeling. OSA (via sleep restriction, decreased
sleep quality, nocturnal hypoxia, inflammation, etc.) may disrupt this rhythm and/or affect
bone metabolism via other mechanisms and predispose individuals to low bone mass and
fracture. As the U.S. population ages and the prevalence of obesity rises we are likely to see
more patients at risk for both osteoporosis and OSA. It is therefore important to determine
the relationship between these two increasingly common diseases, understand the biological
processes that drive the relationship and establish appropriate screening and interventions to
decrease the morbidity, mortality and costs associated with OSA/osteoporosis so that we
may ultimately benefit patients.

Acknowledgments

This work supported by the following:

CMS is supported by NIH grant T32DK007674-20.

SAS is supported by NASA grant NNX10AR10G and NIH grant K24-HL076446.

GK is supported by NIH grant RO1 AR045548.

SR is supported by the NIH.

ESO & JAC for the The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health
funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of
Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational
Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810,

U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, UO1 AG042145, U01 AG042168, UO1
AR066160, and UL1 TR000128

Abbreviations

BMI body mass index
BMD bone mineral density

J Bone Miner Res. Author manuscript; available in PMC 2016 February 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Swanson et al. Page 15

OSA obstructive sleep apnea

AHI apnea-hypopnea index

SCN suprachiasmatic nucleus

Perl and Per2 Period 1 and 2

Cryl and Cry2 Cryptochrome 1 and 2

TMN tuberomammillary nucleus

VLPO ventrolateral preoptic nucleus

NREM non-REM

SWS slow wave sleep

SNS sympathetic nervous system

BTMs bone turnover markers

PTH parathyroid hormone

GH growth hormone

OPG osteoprotegerin

HIF Hypoxia-Inducible Factor

VEGF vascular endothelial growth factor

MSC mesenchymal stem cells

L-spine lumbar spine

pQCT peripheral quantitative computed tomography

vBMD volumetric BMD

aBMD areal BMD

pSSl polar stress strain index

Cl confidence interval

NPY neuropeptide-Y

CRH corticotropin-releasing hormone
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Figure 1. Neuronal balance of normal sleep vs. wake
The relative firing rates of different groups of neurons help govern the sleep/wake balance.

Neurons are represented in the figure as “Anatomical region (neurotransmitter)”. When the
firing rates of the ventrolateral preoptic nucleus (VLPO) dominates, this tips the balance
towards sleep. When the firing rates of the tuberomammillary nucleus (TMN) and
noradrenergic (NE)/serotoninergic (5HT) neurons in the locus coeruleus and dorsal/median
raphe nuclei dominate, they tip the balance towards wakefulness. The hypothalamic wake-
promoting neurotransmitter orexin can stabilize this balance and prevent rapid transitions
from wakefulness to sleep. On the other hand, the neurotransmitter adenosine accumulates
in the basal forebrain during wakefulness, promotes drowsiness and is thought to play a role
in the homeostatic drive for sleep through actions on VLPO neurons. This system is also
influenced by the circadian drive for sleep, represented by the suprachiasmatic nucleus
(SCN), and environmental inputs such as stress and food intake. Adapted (with permission)
from Saper et al 2005.
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Figure 2. Internal synchronization of central (SCN) and peripheral (Cry, Per) clocks in
osteoblasts and osteoclasts

Light is perceived by the retina and transmitted to the SCN by the retinohypothalamic tract.
The SCN synchronizes with clocks in the periphery through a variety of mechanisms. The
SCN communicates with the osteoblast and osteoclast mostly via glucocorticoids and the
sympathetic nervous system.
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Figure adapted with permission from Qvist P, Christgau
S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian
variation in the serum concentration of C-terminal
telopeptide of type I collagen (serum CTx): effects of
gender, age, menopausal status, posture, daylight, serum
cortisol, and fasting. Bone. 2002 Jul;31(1):57-61. PubMed
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Figure 3. Normal day/night rhythm of serum CTX and osteocalcin
The amplitude of the rhythm is blunted by fasting, compared to the fed state for serum CTX.

Levels of serum CTX and osteocalcin increase overnight and decline with food intake.
Adapted (with permission) from Quvist et al Bone 2002.
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Figure 4. Schematic representation of major pathways by which obstructive sleep apnea can
affect bone mass/strength and fracture risk
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